3.11 \(\int \frac {A+B x^2}{(a+c x^4)^{3/2}} \, dx\)

Optimal. Leaf size=262 \[ -\frac {\left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \left (\sqrt {a} B-A \sqrt {c}\right ) F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{4 a^{5/4} c^{3/4} \sqrt {a+c x^4}}+\frac {B \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{2 a^{3/4} c^{3/4} \sqrt {a+c x^4}}+\frac {x \left (A+B x^2\right )}{2 a \sqrt {a+c x^4}}-\frac {B x \sqrt {a+c x^4}}{2 a \sqrt {c} \left (\sqrt {a}+\sqrt {c} x^2\right )} \]

[Out]

1/2*x*(B*x^2+A)/a/(c*x^4+a)^(1/2)-1/2*B*x*(c*x^4+a)^(1/2)/a/c^(1/2)/(a^(1/2)+x^2*c^(1/2))+1/2*B*(cos(2*arctan(
c^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*x/a^(1/4)))*EllipticE(sin(2*arctan(c^(1/4)*x/a^(1/4))),1/2*2
^(1/2))*(a^(1/2)+x^2*c^(1/2))*((c*x^4+a)/(a^(1/2)+x^2*c^(1/2))^2)^(1/2)/a^(3/4)/c^(3/4)/(c*x^4+a)^(1/2)-1/4*(c
os(2*arctan(c^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*x/a^(1/4)))*EllipticF(sin(2*arctan(c^(1/4)*x/a^(
1/4))),1/2*2^(1/2))*(B*a^(1/2)-A*c^(1/2))*(a^(1/2)+x^2*c^(1/2))*((c*x^4+a)/(a^(1/2)+x^2*c^(1/2))^2)^(1/2)/a^(5
/4)/c^(3/4)/(c*x^4+a)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 262, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.210, Rules used = {1179, 1198, 220, 1196} \[ -\frac {\left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \left (\sqrt {a} B-A \sqrt {c}\right ) F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{4 a^{5/4} c^{3/4} \sqrt {a+c x^4}}+\frac {B \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{2 a^{3/4} c^{3/4} \sqrt {a+c x^4}}+\frac {x \left (A+B x^2\right )}{2 a \sqrt {a+c x^4}}-\frac {B x \sqrt {a+c x^4}}{2 a \sqrt {c} \left (\sqrt {a}+\sqrt {c} x^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*x^2)/(a + c*x^4)^(3/2),x]

[Out]

(x*(A + B*x^2))/(2*a*Sqrt[a + c*x^4]) - (B*x*Sqrt[a + c*x^4])/(2*a*Sqrt[c]*(Sqrt[a] + Sqrt[c]*x^2)) + (B*(Sqrt
[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticE[2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/2])/
(2*a^(3/4)*c^(3/4)*Sqrt[a + c*x^4]) - ((Sqrt[a]*B - A*Sqrt[c])*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[
a] + Sqrt[c]*x^2)^2]*EllipticF[2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/2])/(4*a^(5/4)*c^(3/4)*Sqrt[a + c*x^4])

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> -Simp[(x*(d + e*x^2)*(a + c*x^4)^(p + 1))/(
4*a*(p + 1)), x] + Dist[1/(4*a*(p + 1)), Int[Simp[d*(4*p + 5) + e*(4*p + 7)*x^2, x]*(a + c*x^4)^(p + 1), x], x
] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && LtQ[p, -1] && IntegerQ[2*p]

Rule 1196

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[(d*x*Sqrt[a + c
*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticE[2*ArcTan[
q*x], 1/2])/(q*Sqrt[a + c*x^4]), x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rule 1198

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(e + d*q)/q, Int
[1/Sqrt[a + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + c*x^4], x], x] /; NeQ[e + d*q, 0]] /; FreeQ[{a
, c, d, e}, x] && PosQ[c/a]

Rubi steps

\begin {align*} \int \frac {A+B x^2}{\left (a+c x^4\right )^{3/2}} \, dx &=\frac {x \left (A+B x^2\right )}{2 a \sqrt {a+c x^4}}-\frac {\int \frac {-A+B x^2}{\sqrt {a+c x^4}} \, dx}{2 a}\\ &=\frac {x \left (A+B x^2\right )}{2 a \sqrt {a+c x^4}}+\frac {\left (A-\frac {\sqrt {a} B}{\sqrt {c}}\right ) \int \frac {1}{\sqrt {a+c x^4}} \, dx}{2 a}+\frac {B \int \frac {1-\frac {\sqrt {c} x^2}{\sqrt {a}}}{\sqrt {a+c x^4}} \, dx}{2 \sqrt {a} \sqrt {c}}\\ &=\frac {x \left (A+B x^2\right )}{2 a \sqrt {a+c x^4}}-\frac {B x \sqrt {a+c x^4}}{2 a \sqrt {c} \left (\sqrt {a}+\sqrt {c} x^2\right )}+\frac {B \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{2 a^{3/4} c^{3/4} \sqrt {a+c x^4}}+\frac {\left (A-\frac {\sqrt {a} B}{\sqrt {c}}\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{4 a^{5/4} \sqrt [4]{c} \sqrt {a+c x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.04, size = 99, normalized size = 0.38 \[ \frac {3 A x \sqrt {\frac {c x^4}{a}+1} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};-\frac {c x^4}{a}\right )+2 B x^3 \sqrt {\frac {c x^4}{a}+1} \, _2F_1\left (\frac {3}{4},\frac {3}{2};\frac {7}{4};-\frac {c x^4}{a}\right )+3 A x}{6 a \sqrt {a+c x^4}} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*x^2)/(a + c*x^4)^(3/2),x]

[Out]

(3*A*x + 3*A*x*Sqrt[1 + (c*x^4)/a]*Hypergeometric2F1[1/4, 1/2, 5/4, -((c*x^4)/a)] + 2*B*x^3*Sqrt[1 + (c*x^4)/a
]*Hypergeometric2F1[3/4, 3/2, 7/4, -((c*x^4)/a)])/(6*a*Sqrt[a + c*x^4])

________________________________________________________________________________________

fricas [F]  time = 0.91, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {c x^{4} + a} {\left (B x^{2} + A\right )}}{c^{2} x^{8} + 2 \, a c x^{4} + a^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/(c*x^4+a)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^4 + a)*(B*x^2 + A)/(c^2*x^8 + 2*a*c*x^4 + a^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {B x^{2} + A}{{\left (c x^{4} + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/(c*x^4+a)^(3/2),x, algorithm="giac")

[Out]

integrate((B*x^2 + A)/(c*x^4 + a)^(3/2), x)

________________________________________________________________________________________

maple [C]  time = 0.00, size = 217, normalized size = 0.83 \[ \left (\frac {x}{2 \sqrt {\left (x^{4}+\frac {a}{c}\right ) c}\, a}+\frac {\sqrt {-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}+1}\, \sqrt {\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}+1}\, \EllipticF \left (\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, x , i\right )}{2 \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}\, a}\right ) A +\left (\frac {x^{3}}{2 \sqrt {\left (x^{4}+\frac {a}{c}\right ) c}\, a}-\frac {i \sqrt {-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}+1}\, \sqrt {\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}+1}\, \left (-\EllipticE \left (\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, x , i\right )+\EllipticF \left (\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, x , i\right )\right )}{2 \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}\, \sqrt {a}\, \sqrt {c}}\right ) B \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x^2+A)/(c*x^4+a)^(3/2),x)

[Out]

B*(1/2/((x^4+a/c)*c)^(1/2)/a*x^3-1/2*I/a^(1/2)/(I/a^(1/2)*c^(1/2))^(1/2)*(-I/a^(1/2)*c^(1/2)*x^2+1)^(1/2)*(I/a
^(1/2)*c^(1/2)*x^2+1)^(1/2)/(c*x^4+a)^(1/2)/c^(1/2)*(EllipticF((I/a^(1/2)*c^(1/2))^(1/2)*x,I)-EllipticE((I/a^(
1/2)*c^(1/2))^(1/2)*x,I)))+A*(1/2/((x^4+a/c)*c)^(1/2)/a*x+1/2/a/(I/a^(1/2)*c^(1/2))^(1/2)*(-I/a^(1/2)*c^(1/2)*
x^2+1)^(1/2)*(I/a^(1/2)*c^(1/2)*x^2+1)^(1/2)/(c*x^4+a)^(1/2)*EllipticF((I/a^(1/2)*c^(1/2))^(1/2)*x,I))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {B x^{2} + A}{{\left (c x^{4} + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/(c*x^4+a)^(3/2),x, algorithm="maxima")

[Out]

integrate((B*x^2 + A)/(c*x^4 + a)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {B\,x^2+A}{{\left (c\,x^4+a\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*x^2)/(a + c*x^4)^(3/2),x)

[Out]

int((A + B*x^2)/(a + c*x^4)^(3/2), x)

________________________________________________________________________________________

sympy [C]  time = 7.19, size = 78, normalized size = 0.30 \[ \frac {A x \Gamma \left (\frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{4}, \frac {3}{2} \\ \frac {5}{4} \end {matrix}\middle | {\frac {c x^{4} e^{i \pi }}{a}} \right )}}{4 a^{\frac {3}{2}} \Gamma \left (\frac {5}{4}\right )} + \frac {B x^{3} \Gamma \left (\frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {3}{4}, \frac {3}{2} \\ \frac {7}{4} \end {matrix}\middle | {\frac {c x^{4} e^{i \pi }}{a}} \right )}}{4 a^{\frac {3}{2}} \Gamma \left (\frac {7}{4}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x**2+A)/(c*x**4+a)**(3/2),x)

[Out]

A*x*gamma(1/4)*hyper((1/4, 3/2), (5/4,), c*x**4*exp_polar(I*pi)/a)/(4*a**(3/2)*gamma(5/4)) + B*x**3*gamma(3/4)
*hyper((3/4, 3/2), (7/4,), c*x**4*exp_polar(I*pi)/a)/(4*a**(3/2)*gamma(7/4))

________________________________________________________________________________________